非科幻思考(第3/17页)
最近我们都听说了新版本的“阿尔法狗零”,依靠自我对弈的强化学习,用3天时间战胜了老版本的所有“阿尔法狗”。这是很强大的方法。实际上,在“阿尔法狗”的最初版本中,自我对弈的时候也已经用到强化学习。随机尝试和正反馈能使得行为很快集中到特定的目标上。
现在问题就来了,还有什么是人工智能学不会的吗?
人工智能面临的瓶颈
如果机器学习这么厉害,人工智能什么都能学会,是不是很快就要取代人类了?
可以肯定的是,目前的人工智能还不是什么都能做,我们离万能超级人工智能还有很远的距离。
那是运算速度的问题吗?如果芯片算力按照摩尔定律、指数增长一直持续,我们会不会很快达到智能的奇点?
我个人的观点是,不完全是运算速度的问题,即便运算速度持续翻番,也还有一些阶梯的困难需要一个一个地跨越。这些困难也许并不是永远不可能跨越,但至少不是目前的算法能简单跨越的,而必须有新的算法或者理论突破(其实现在也有很多别的算法,我后面讨论)。
说到这里,闲聊两句。很多事物的发展是阶梯状的。我们往往容易从一件事的成功,推测未来所有事的成功,然而遇到了下一个挑战,仍然需要新的等待和突破。
关于人工智能这件事,人们的议论往往太过于“now or never”,要么认为目前已经条件成熟,只要算力增加,就能奇点来临;要么认为这都是痴人说梦,机器永远学不会人类的心智。但实际上更有可能的是,很远的未来有可能做到,但需要翻越一个又一个理论台阶。
举一个例子。
从牛顿力学和工业革命时期来看,因为牛顿定律的强大,人们就认为自己解决了世界上所有问题,未来只需要算,就能把一切预测出来。那个时候就有哲学观认为人就是机械机器。但事情的实际发展是:牛顿定律解决不了所有事。20世纪初,人们把牛顿定律和电磁理论结合起来,相信人类物理学大厦已经完备,只剩下头顶上的“三朵小乌云”,然而正是这“三朵小乌云”,牵扯出了后面的量子力学和相对论,直到现在人们也没有算出全世界。未来呢?人类有可能完全揭晓宇宙的奥秘吗?有可能。但仍然有一个一个新的鸿沟。
与之类比,超级人工智能有可能成真吗?有可能,但不是立刻。技术上还有一个个困难台阶需要跨越。“深度学习”不是万能的,算力也不是唯一重要的因素。
我把人工智能目前还解决不了的问题,也称为“三朵小乌云”。
什么是人工智能目前解决不了的问题呢?我们仍然从“阿尔法狗”说起。
“阿尔法狗”的强大是所有人工智能的强大,它面临的困难,也是人工智能问题的缩影。
“阿尔法狗”对一些人类认为很困难的问题却觉得很简单,对人类认为简单的问题却觉得困难。举一个很小的例子。这样一个问题:如果一个人从超市的货架上拿了一瓶酒就跑出门,店员会做什么?为什么?它就会觉得困难,难以回答。
如果是一个人,会如何回答这个问题呢?人会觉得这个问题太简单了啊,店员有可能会直接去追,因为要把店里的商品追回来;也有可能会打电话报警,因为自己不想冒险;或者告诉老板;或者喊路人帮忙。诸如此类。
但是目前的人工智能会觉得这个问题很难,无法回答。原因主要在于以下几个方面:
第一,是综合认知的能力。
第二,是理解他人的能力。
第三,是自我表征的能力。
为什么人工智能会觉得这些问题难?我们一个一个看。
第一个难点,综合认知的能力。
这个问题对于我们每个人而言都是非常简单的,头脑中甚至一下子就能想到那种画面感。但对人工智能来说就是很难理解的。为什么?
最主要的差别在于常识。
当我们理解这段话,我们头脑中实际上是反映出很多背景信息,包括:(1)他想喝酒;(2)他没有付钱;(3)酒摆在超市是一种商品;(4)从超市拿东西需要付钱;(5)他没有付钱就出门是违规的;(6)他是想逃跑;(7)超市店员有义务保护超市商品,不能允许这种事情发生。在所有这些背景信息支持下,我们可以一眼辨认出这个动作画面的情境。除了我们自然脑补的这些背景信息,也还是有一些小概率背景信息,有可能影响对情境的解读。也许这个人是店主,有急事出门,如果是店主,自然不用付钱,店员也不会见怪,但这种可能性不大。任何一个情境的解读都需要大量常识作为背景信息。
常识包含我们习以为常的知识总和,包含我们对整个环境和经济系统的理解。这些理解都太平常,我们就称之为常识。人工智能目前还没有这些常识,它并不知道一瓶酒摆在超市里和公园里有什么差别,也不知道超市买东西的惯例流程。从语法上说,从超市拿酒和从公园拿酒都是符合语法的表达,但我们知道,其中一个合理,另一个不合理。