第八百零七章 我徐某人从未开挂……思维卡,激活!(第2/3页)

“……”

又是一阵熟悉的眩晕感过后,徐云再次感觉自己的视野变得无比开阔了起来。

徐云看了眼自己的双手,明白思维卡已经被激活了。

在这一次的套卡奖励之中,陈景润的思维卡算是一个比较特殊的情况。

这次思维卡除了华夏全明星的主题之外,很明显都是以物理应用上的成就和能力对思维卡进行的分类。

比如说老郭,他的事迹无比感人,但在卡片能力上他还是被分到了陆光达的下一档。

陈景润也是如此。

陈景润在数学上的能力毋庸置疑,如果按照数学能力划分,他应该可以归类到银卡范畴。

但由于这次卡组的核心是物理……或者说应用层次的成就,因此陈景润最终还是被归类到了铜卡级别。

如果是在解决物理问题的时候激活陈景润思维卡,说实话这张卡片能起到的效果大概也就是铜卡水准,但要是你准备处理的东西涉及到了数学……

那么毫无疑问,这张卡的性价比将会爆膨!

譬如……徐云这次要解决的问题。

聪明的同学应该还记得。

当初在1100副本完成后,徐云曾经得到过一个很奇怪的奖励。

奖励的内容是一张写满了方程的纸片,后来徐云对它进行过了一次解析,从而得到了孤点粒子的概率轨道。

某种意义上来说。

那条粒子轨道和驴兄一样,贯穿了徐云过去这段几乎所有的事件。

而实际上。

那条轨道结果只是方程前三分之一的内容,后头最少还有两个阶段没有被解出来。

换而言之。

按照孤点粒子的情况来推测,后两个阶段应该也有对应的……唔怎么说呢,应该描述为有对应的物理现象?

剩余的两个阶段徐云也花了一些零散时间研究过,奈何由于能力问题,他一直没有找出正确的解——如今徐云的能力大概在教授之上院士之下,而这两个阶段中最简单的第二阶段也属于菲尔兹奖……也就是数学最高奖的难度层次了。

至于第三阶段的那个神秘比值……徐云敢肯定,它一定是一项可以震动世界的结果,保守估计都和相对论是同一级的,属于徐云目前哪怕花掉所有思维卡都不可能触及的高度。

至少……徐云得和老爱见过一次面,才有可能讨论那事儿。

当然了。

没结果归没结果,徐云倒也不至于一点收获都没有。

譬如在解方程的过程中他就发现,第二阶段的最终成果应该与某个机理有关。

因为徐云在期间发现了温度和类似层状结构的表达式,显然是某种物理现象的新媒介,而且多半和晶体有一定关系。

所以在得知了自己答辩委员会的评审阵容之后,徐云便把主意打到了第二阶段的成果上。

他有一种预感,第二阶段的这个未必能够给他带来多少奖项上的荣誉,但很可能会产生某种更大的影响力。

当然了。

即便徐云的猜测有误也没事儿,徐云手上还有冷聚变的相关研究做打底呢。

随后徐云深吸一口气,将注意力放到了面前的算纸上。

只见他拿起笔,很快在纸上写下了那道方程:

4D/B2=4(√(D1D2))2/[2D0]2=√(D1D2)/[D0]=(1-η2)≤1……

{qjik}K(Z/t)=∑(jik=S)∏(jik=q)(Xi)(ωj)(rk);(j=0,1,2,3……;i=0,1,2,3……;k=0,1,2,3……)

{qjik}K(Z/t)=[xaK(Z±S±N±p),xbK(Z±S±N±p),……,xpK(Z±S±N±p),……}∈{DH}K(Z±S±N±p)……

(1-ηf2)(Z±3)=[{K(Z±3)√D}/{R}]K(Z±M±N±3)=∑(ji=3)(ηa+ηb+ηc)K(Z±N±3);

(1-η2)(Z±(N=5)±3):(K(Z±3)√120)K/[(1/3)K(8+5+3)]K(Z±1)≤1(Z±(N=5)±3);

W(x)=(1-η[xy]2)K(Z±S±N±p)/t{0,2}K(Z±S±N±p)/t{W(x0)}K(Z±S±N±p)/t……

最后的一个公式……或者说一个数值为:

Le(sx)(Z/t)=[∑(1/C(±S±p)-1{∏xi-1}]-1=∏(1-X(p)p-s)-1。

这是一个标准的正则化组合系数和解析延拓方程组,涉及到了无限多层次的对称与不对称曲线曲面的圆对数与拓扑。

其中第一阶段是一到三行,通过∑(jik=S)∏(jik=q)(Xi)(ωj)可以确定曲面与经线成了某个定角,从而假设定模型λ=(A,B,π),以及观测序列O=(o1,o2,……,oT)。

按照上面的逻辑推导,就可以得出孤点粒子的概率轨道。